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Abstract 

The emergence and solidification of network patterns is typically explained 
by the preferential attachment rule. The underlying logic is that a small 
number of actors which are characterized by an above average degree 
attract links at a higher rate than others. We raise the question as to what 
extent the wide spread preferential attachment explanation holds true in 
the context of inventor networks. To shed some light on this issue we 
investigate co-patenting relationships among inventors in the field of laser 
technology in West Germany from 1961 to 2005. From a system 
perspective, the development of the inventor networks is in line with the 
pattern that is implied by the preferential attachment logic. However, we 
find high levels of fluidity of micro-level relationships that put the typical 
transaction cost and trust-based explanation of tie formation processes 
into question. 
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1. Why do network topologies matter and how do they emerge? 

Innovation processes are characterized by a pronounced division of labor 

between actors (Wuchty et al. 2007) that manifests in networks of 

relationship. Many empirical studies clearly show that the structure of such 

networks can have a significant effect on the performance of single actors 

in a network as well as on the performance of a network as a whole (Kudic 

2015). Understanding how and why certain network structures emerge 

over time is of vital importance for the strategic positioning and related 

performance outcomes of the actors involved as well as for policy that 

aims at influencing such processes. 

Probably the most widespread explanation for micro-level attachment 

processes in networks is the preferential attachment rule originally 

proposed by Barabasi and Albert (1999). Their simple but powerful model 

is based on two basic ingredients: network growth and preferential 

attachment (Albert and Barabasi 2002). A key assumption of the model is 

that actors who were once part of the network remain in the network in 

subsequent periods. Moreover, it is assumed that the links between 

actors, once established, are stable over time. This is in line with 

economic reasoning in cooperation and network research that cooperation 

requires trust and transaction costs that will be sunk if a relationship were 

to be abandoned. The underlying logic of the model is based on the notion 

that a small share of actors—those who are characterized by an above 

average number of network links—attracts new links at a higher rate than 

those actors that are less well-connected in the network. For the first time 

it allowed for an explanation of the emergence of scaling and power-law 

degree distributions in real-world networks. 

Today, the preferential attachment logic, according to Barabasi and 

Albert (2002), is the prevailing explanation when it comes to linking micro-

level processes to the emergence of real-world patterns at higher levels of 

aggregation. Recent studies (Powell et al. 2005, Garas et al. 2014) cast, 

however, serious doubt on whether the commonly applied Barabasi-Albert 

model provides an appropriate explanation for pattern formation in R&D 
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networks. For instance, Powell et al. (2005) showed that the preferential 

attachment logic has its limitations. They found that actors in US Biotech 

connect to one another through in a variety of independent ways. 

Similarly, Garas et al. (2014) analyzed alliance formation behavior and 

found that many firms alter their partner selection strategies over time. 

Particularly, many newcomers tend to first connect with actors that have a 

high degree of centrality in the network and, after some time, prefer links 

to less central nodes. 

This paper applies co-patenting data at the inventor level to analyze 

to what extent preferential attachment matters for the emergence of large-

scale patterns in R&D networks. The employed dataset is unique in the 

sense that it covers the patenting activities of all inventors in West German 

research on laser technology over a relatively long period of time (from the 

inception of the technology in the year 1961 until 2005). Our study 

contributes to the current debate on the role of preferential attachment 

mechanisms in, not only innovation economics, but also in related fields of 

network research. Our findings have far ranging implications for theoretical 

reasoning with regard to research cooperation and network evolution.  

An in-depth analysis of attachment logics and emerging network 

topologies is vital for at least two reasons. First, it can help to understand 

the structural particularities of real-world innovation networks that enable 

knowledge diffusion and innovation. Second, and even more important in 

this context, it allows for the identification of structurally resilient areas in 

the network that shield the network against potential instabilities that may 

hamper the system’s innovation performance. 

The following Section 2 summarizes the main contributions of 

previous research on pattern formation at the system level and attachment 

logics at the micro level. We then provide background information on the 

development of the West German laser industry in the period of analysis 

and introduce our data (Section 3). Section 4 addresses to what extent 

how much inventor networks in the German laser industry show typical 

real-world patterns. Next, we turn our attention to tie formation processes 
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at the micro-level (Section 5). We conclude with a brief discussion of the 

main findings in the light of the contemporary debate and outline some 

promising avenues for further research (Section 6). 

2. Previous research on pattern formation and attachment 
mechanisms 

2.1 Pattern formation at the overall network level 

Research on the emergence of network structures is highly 

interdisciplinary. Mathematicians (Erdős and Rényi 1959), physicists 

(Barabasi and Albert 1999; Albert and Barabasi 2002), biologists (Nowak 

et al. 2010) and sociologists (Milgram 1967; Watts and Strogatz 1998) 

have significantly enhanced our understanding of pattern formation 

processes in networks. These and many other studies show that  real-

world systems that reach from technical systems (e.g. the internet) to 

socio-economic systems (e.g. innovation networks) are anything but stable 

and homogeneously structured. Instead, ties are not randomly distributed 

and one can observe typical pattern formation processes in real-world 

systems (cf. Albert and Barabási 2002; Newman et al. 2006; Newman 

2010). The study of network topologies has also raised considerable 

attention among economists as well as among scholars in management 

and organization research.  

For instance, Milgram (1967) showed quite early in his famous ‘letter 

passing’ experiment that people in the US are separated by no more than 

six steps. The explanation for this highly interesting finding can be based 

on the structural configuration of the interpersonal network. Ties were not 

randomly distributed among individuals, and the overall network structure 

was characterized by short average path-length and high clustering. It took 

nearly 30 years before scholars were able to quantify the so-called ‘small-

world’ phenomenon1 by applying social network analysis methods (Watts 

and Strogatz 1998). Several empirical studies have confirmed the co-

                                            
1 Compared to a random model, small-world networks are characterized by significantly 
shorter average path-lengths and a much higher clustering coefficient (Newman 2010). 
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existence of short path-lengths and above average clustering coefficients 

in innovation networks (e.g. Uzzi et al. 2007), as well as, showed that 

these systemic properties can enhance creativity at the actor’s level (Uzzi 

and Spiro 2005) and may foster firms’ ability to create novelty in terms of 

innovations (Schilling and Phelps 2007).  

Similarly, the emergence of core-periphery (CP) structures at the 

overall network level (Doreian and Woodard 1994) attracted much 

attention.2 Some scholars have proposed ways to measure the emergence 

of core-periphery patterns at the overall network level (Borgatti and Everett 

1999). Others have applied these measures in an innovation context and 

demonstrated that actors who occupy an intermediate position between 

the core and the periphery in real-world networks outperform others in 

terms of creative outcomes (Cattani and Ferriani 2008). In an inter-

organizational context, it has been argued that the core of sectoral 

innovation network should contain essential elements of the industry’s 

technological knowledge (Rank et al. 2006). 

Last but not least, scaling-properties of networks (cf. Barabasi and 

Albert 1999; Barabasi and Bonabeau 2003) raised considerable attention. 

The underlying logic is fairly simple: a small number of actors are rather 

densely connected while most other actors have only few connections. 

This, in turn, leads to a systematically skewed degree distribution at higher 

levels of aggregation.3 The existence of these patterns has been 

documented in a broad range of studies. For instance, Powell et al. (2005) 

analyzed degree distributions of six networks (differentiated by type of 

partner) over the period 1988 – 1999 in the US life-science industry. The 

results for all six settings reject the presence of an exponential-decay 

degree distribution. In other words, degree-plots clearly show power-law 

slopes indicating that a small number of actors seem to attract a 

                                            
2 For a review, see Csermely et al. (2013). 
3 A fat-tailed or scale-free degree distribution of a real-world network can be described as 
follows: “Unlike the tail of a random bell curve whose distribution thins out exponentially 
as it decays, a distribution generated by a popularity bias has a “fat” tail for the relatively 
greater number of nodes that are highly connected. The fat tail contains the hubs of the 
network with unusually high connectivity.” Powell et al. (2005, 1151). 
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significantly higher number of ties compared to the large majority of other 

network actors. 

To sum things up, by now it is well-recognized that real-world 

networks tend to exhibit structural properties that differ systematically from 

random networks. However, we still have a rather rudimentary 

understanding of the drivers that cause the emergence of real-world 

network patterns over time. This leads to the question of how far real-

world socio-economic systems—innovation networks in particular—differ 

from randomly generated benchmark networks of comparable size and 

density. At the same time, it calls for a closer look at the driving forces 

behind these pattern formation processes.  

2.2 Attachment mechanism at the micro level and its economic 
implications  

We are certainly not the first to address attachment mechanism at the 

micro-level.4 For instance, Kirman (1993) demonstrated that “herding 

behavior” can lead to systematic structural biases in economic systems. 

Davis (1970) and Holland and Leinhardt (1971) have introduced the 

“triadic closure” mechanism and argued that two unconnected actors (i) 

and (j) which are both connected to third actor (k) have a higher probability 

to establish a direct connecting link among one another than establishing 

a link with another actor (y) in the system. Some have argued that 

similarities between actors (“homophily”) increase the probability to 

connect to one another (McPherson et al. 2001). Other authors have 

raised exactly the opposite argument by introducing the concept of 

“heterophily” according to which heterogeneous actors attract one another 

at a higher rate (Kimura and Hayakawa 2008).  

However, by far the most widespread explanation of structuration 

processes in real-world network networks is the so-called Barabasi-Albert 

model (cf. Barabasi and Albert 1999; Albert and Barabasi 2002). The 

                                            
4 For an interesting compilation of papers and a comprehensive overview, see Newman 
et al. (2006). 
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preferential attachment algorithm proposed by Barabasi-Albert is 

characterized by two features. First, networks are assumed to grow over 

time. The model starts with a small number of nodes (m0) and at every 

time step new nodes (m) connect to existing nodes in the system while it is 

assumed that the new nodes (m) are different from those nodes already 

present in the system (Albert and Barabasi 2002, 71). There are no node 

exits or tie termination processes incorporated in the model. Second, the 

attachment process is not assumed to be systematically biased. The 

model is based on the assumption that nodes with a relatively high degree 

attract new partners at a higher rate than nodes with a lower number of 

links. Hence, the probability (π) that a new node will be connected to node 

(i) in the network depends on the degree (ki) of node (i), such that (ibid.) 

ሺ݇௜ሻߨ ൌ
௞೔

∑ ௞ೕೕ
, 

with the denominator being the sum qualifies the sum of links over all 

nodes.  

Numerical simulation shows that after t time steps this procedure 

results in a network with (N= t+ m0) nodes and mt edges and the entire 

system evolves into a scale invariant state (Albert and Barabasi 2002). In 

other words, the algorithm produces a network structure that is 

characterized by a fat-tailed degree distribution.5 One important feature of 

the model is that a small number of nodes attract—more or less by 

chance—an above-average number of cooperation ties at the very 

beginning of the network evolution process. The implemented attachment 

mechanism ensures that these high-degree nodes continue to attract new 

partners at a higher rate than the other actors in the system. In other 

words, once the attachment process has started, a small number of high-

degree actors continue to reinforce their highly stable position within the 

system.  

                                            
5 For an illustration of the network structure generated by the Barabasi-Albert model, see 
Appendix I. The model generates scaling patterns that are typical for real-world networks 
(cf. Figure 2a). 
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The assumptions and predictions of the model are in line with 

economic reasoning on the role of cooperation in an R&D context. The 

most evident arguments are certainly related to costs. Repeated 

cooperation with a well-known partner decreases search costs as well as 

the effort for establishing a relationship. Similarly, redundant linkages 

between two partners possess the potential for realizing synergy effects 

and decreasing cooperation-related costs. Theoretical concept such as the 

concept of organizational routines, originally proposed by evolutionary 

economists (Nelson and Winter 1982; Teece et al. 1997), have been 

applied and adapted to an inter-organizational context to explain superior 

cooperation (Zollo et al. 2002; Goerzen 2005) and networking capabilities 

(Hagedoorn 2006) of firms. Once organizations have developed 

organizational routines from their cooperative relationships, they can save 

costs by transferring these routines to collaborative relationships with 

other partners instead of developing new routines more or less from 

scratch. Hence, one should observe relatively stable relationships in the 

sense of repeated and redundant cooperation events. 

Similarly, it has been claimed that micro-level ties should typically 

be characterized by a high degree of recurrence of cooperation 

sequences. There are at least two arguments that support this 

assumption. First, identifying a suitable cooperation partner and 

establishing cooperative relationship requires considerable transaction 

costs that would be sunk if the relationship is abandoned. Hence, actors 

have a strong incentive to maintain a once established cooperative 

relationship. Second, since the result of R&D cooperation is ex-ante 

unknown and, therefore, cannot be completely specified in a contract, 

such a relationship requires mutual trust of the cooperation partners. Trust 

is also needed for the exchange of confidential information that may be 

necessary in such a cooperative relationship (Doz 1996; Das and Teng 

2002). In a nutshell, cooperation with well-known partners decreases the 

risk of unexpected opportunistic behavior and increases the success 

prospects of joint R&D endeavors. 
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The implications derived from the Barabasi-Albert model and the 

theoretical arguments raised above are straightforward. Firstly, the 

number of actors in a network should grow over time. Second, since the 

Barabasi-Albert model generates networks with short average path-

lengths and high clustering, we expect to find the emergence of typical 

real-world network patterns such as core-periphery structures, small-world 

patterns and scaling properties at the overall network level. Third, there 

should be some central actors with relatively many links that remain in a 

central position over time. Similarly, the ties structure should show rather 

stable patterns at the micro level. Both, transaction cost and trust-based 

explanations of tie formation processes support this line of argument.  

3. Industry and data 

To shed some light on the micro-level attachment mechanisms in R&D 

networks we investigate co-patenting relationships among inventors in the 

field of laser technology in West Germany from 1961 to 2005. The 

German laser technology provides a well-suited empirical example for 

analyzing the structural stability of R&D networks because developments 

in this field require a pronounced division of labor between different actors 

and institutions. One reason for this special need of cooperation is the 

science-driven character of laser technology (Bertolotti 2005; Bromberg 

1991; Grupp 2000) that requires knowledge transfer between public 

research and private sector firms. A second reason is that development of 

laser technology requires expertise from various scientific disciplines such 

as optics, electronic engineering and physics (Fritsch and Medrano 2015). 

We draw upon patent data to track the R&D cooperation activities in this 

technological field. 

3.1 The development of laser technology research 

The acronym laser was originally coined by Gould R. Gordon (1959) and 

stands for “Light Amplification by Stimulated Emission of Radiation“. It 

describes a wide range of devices for the amplification of coherent light by 

Jena Economic Research Papers 2016 - 005



9 

 

 
 

stimulated photon emission generated by pumping energy into an 

adequate medium. A laser device emits a coherent light beam, both in a 

spatial and a temporal sense, that can be generated based on different 

gain media such as solid crystals and semiconductors. The coherent light 

beam can be modulated and amplified. Laser is a general purpose 

technology that has a wide range of applications and can be regarded as 

one of the most important scientific discoveries of the 20th century. 

The theoretical foundations of laser technology date back to the year 

1917 when Albert Einstein rearranged Max Planck’s quantum theory into a 

light quantum theory postulating the possibility of stimulated light emission 

(Bertolotti 2005). In 1928, Rudolf Ladenburg and Hans Kopfermann 

provided the first experimental evidence for stimulated emission, and in 

the early 1950s, experimental evidence led to speculations about the 

possibility of generating microwave amplification by stimulated emission.  

In 1960, a research group led by Theodore H. Maiman at the 

Laboratories of the Hughes Aircraft Company in Malibu (California, USA) 

was the first to succeed in realizing a laser effect, a breakthrough 

duplicated later that same year by a research group led by Arthur L. 

Schawlow at the Bell Telephone Laboratories (Bertolotti 2005; Bromberg 

1991). News of this success spread quickly around the world creating a 

buzz in the academic community, a flurry of press releases, presentations 

at conferences, and academic publications (Maiman 1960a, 1960b; Collins 

et al. 1960) that became available around the end of that same year 

generating a general sense of euphoria among scientists. 

3.2 Laser technology research in Germany  

The first realization of a laser in Germany occurred in the Munich 

laboratories of the Siemens Company which was the largest private-sector 

research facility in West Germany at the time (for details see Fritsch and 

Medrano 2015). Until 1970, Siemens was the dominating firm in laser 

research in Germany. Starting in the mid-1960s, an entire industry 
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emerged that was characterized by a high number of newly founded small 

firms (Buenstorf 2007). 

According to Grupp (2000), the laser industry experienced a long 

initial experimentation phase of more than 20 years that has been 

characterized as a “solution in search of a problem” (Bromberg 1991). It 

was only around 1982 that the market for commercial laser products took 

off, and the expansion phase of this technology began (Grupp 2000). 

When the industry took off, the technology quickly diversified and began to 

be integrated into diverse types of commercial applications (Buenstorf et 

al. 2012). 

3.3 Data sources 

Our empirical study is based on patent application data. It is commonly 

agreed that a patent application indicates an innovation effort. Similarly, 

co-patenting activities are frequently used as an indication of collective 

innovation processes jointly conducted by two or more actors. From the 

patent data we obtained information on the applicant organizations and all 

of the inventors that have made significant contributions to the invention 

that allow us to identify links between these actors.  

We have gathered patent application data for the entire population of 

inventors in the broader field of laser technology in Germany over a period 

of 45 years from the inception of the technology in the year 1961 until 

2005. These data were obtained from the database DEPATISnet 

(www.depatisnet.de), which is maintained by the German Patent and 

Trade Mark Office, and from the DOCDB database of the European Patent 

Office (www.epo.org), which has worldwide coverage. From these sources 

we selected all patent applications with priority in West Germany that were 

assigned to the technological field “devices using stimulated emission” 

(IPC H01S) as either the main or secondary class. Research in this IPC 

class is related to laser beam sources that constitutes the basis for all 

kinds of applications. We also account for important applications of laser 

technology by including those patent applications in the fields of material 
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processing (IPC B23K), medical technology (IPC A61 without IPC A61K) 

and spectroscopy (IPC G01N) that mention the term “laser” in the 

document. 

3.4 Methodological consideration on the use of co-patenting data for 
network analyses 

The construction of inventor networks based on co-patents requires some 

additional assumptions. Generally, we regard two particular inventors as 

being linked if they are both named on the same patent application. For 

the purpose of this study, we stick to the assumption that each inventor of 

a co-patent with more than two inventors has a relationship to all other 

inventors named on the patent so that the internal structure is best 

represented by a fully connected undirected graph. This implies that 

information between two actors can be exchanged in both directions. 

Dividing the observation period into sub-periods implies that the 

duration of a cooperative tie is limited to that period if the respective 

inventors are not mentioned together on another patent in the subsequent 

period. This assumption is necessary since patent data provides no direct 

indication of tie-duration or tie-termination dates.  

3.5 Basic descriptives on co-patenting activities and team size  

Innovation processes are increasingly characterized by a division of labor 

between different actors and institutions. This trend towards more R&D 

cooperation is well reflected in our data. We split the observation period 

into nine sub-periods each covering a five-year interval. The priority filing 

date of the underlying application is used to assign the co-patenting 

relationships to the respective sub-period. In total, we are able to identify 

4,381 laser-related patent applications with German inventors. 

Table 1 depicts some descriptive statistics for the patent data 

gathered for the period between 1960 and 2005. In the first observation 

period (1961-65) we found only 53 co-patents which amount to 31 percent 

of all patents in this period. Looking at the second sub-period (1966-70) 
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reveals a remarkable increase in both single and co-patenting activities. In 

the mid-70s the number of co-patents exceeds that of single patents for 

the first time. The subsequent periods are characterized by a strong 

increase in co-patenting activities, whereas the number of single patents 

rises only at a modest pace. In the last time interval (2001-2005) more 

than 71 percent of all patent applications have two or more inventors. 

Table 1:  Descriptive statistics – number of single patents and co-patents 
over time 

  
1961-
1965 

1966-
1970 

1971-
1975 

1976-
1980 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

Sum 

Single 
patents 

117 178 142 130 140 242 243 268 251 1.711

2 inventors 41 75 68 73 112 177 194 226 196 1.162

3 inventors  9 29 28 40 66 121 122 177 208 800 

4 inventors  3 3 11 16 21 46 76 112 117 405 

5 inventors  0 1 6 2 7 15 40 41 53 165 

6 and more 
inventors 

0 1 0 5 7 10 26 36 53 138 

Co-patents 
(all) 

53 109 113 136 213 369 458 592 627 2.670

Patents (all)  170 287 255 266 353 611 701 860 878 4.381

Average 
team size 

2.28 2.39 2.60 2.75 2.76 2.82 3.12 3.18 3.37 - 

 

Over the entire observation period the number of single-inventor 

patents has doubled, while the number of co-patents increased by a factor 

of about 12. Not only the total number and share of co-patents but also the 

number of inventors per team has increased from 2.28 in the 1961-65 

period to 3.37 in the period 2001-2005. In all observation windows smaller 

teams of two, three or four co-inventors account for the majority of the co-

patents. The last category includes all patent applications where the 

number of co-inventors ranges between six and twelve. 
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4. Network properties at the overall network level 

We begin our investigation of the German laser industry inventor network 

with a brief look at the topology and some basic properties of the 

networks. Figure 1 provides an overview of the development of basic 

network properties over the nine sub-periods. Both, the number of nodes 

as well as the number of ties, have considerably increased over time. 

 

 
 

Figure 1:  Basic properties of the German laser industry inventor network 

The disproportional increase of ties is reflected in the upwards 

sloping H-Index6 and average network degree trend-lines. Such a pattern 

is frequently interpreted as a first indication that a small number of 

exposed actors attract ties at a higher rate as compared to the majority of  

                                            
6 According to Campitelli et al. (2010) the H-index of a node can be defined as the largest 
integer h such that the node has at least h direct neighbors which have a degree of at 
least h. The plot shows an aggregated H-index for the German laser industry inventor 
network.  
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2a Degree distribution and “scaling patterns” 

 
 

 
 

2b Average path-length, clustering and “small world” characteristics 
 

 
 

2c k-core strata and “core-periphery” properties 

Figure 2:  Structural properties of the German laser industry innovation 
network 

inventors in the network. We find a quite low and decreasing network 

density at the overall network level. The degree-based and the 
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betweenness-based indices for network centralization are also declining.  

In a next step we compare the German laser industry inventor network 

with a random network with regard to three characteristics: (i) overall 

degree distribution, (ii) small world properties, and (iii) core-periphery 

properties (Figure 2). 

For exploration of the overall degree distribution we calculated the 

individual degree for each inventor in each of the nine sub-periods. Figure 

2a shows the degree distribution for the entire observation period. The 

abscissa of the histogram on the left represents the degree (k), while the 

ordinate measures the fraction of nodes in the network p(k) for each 

degree value. The most frequently observed degree value amounts to 2, 

while the highest observed degree value is 27. The graph on the right 

hand side of Figure 2a shows the log-log scatter plots of the degree 

distributions. According to Newman (2010, 249), an ideal-typical scale-free 

degree distribution should be monotonously decreasing over the entire 

range of observations and should result in a negatively sloped straight line 

in a log-log plot. The curve in the log-log plot of Figure 2a comes quite 

close to the theoretically optimal form indicating a scale-free structure.7 In 

contrast, a random degree distribution would be reflected by a bended 

curve progression towards the upper right in the log-log plot. In other 

words, the overall degree distribution of the German laser industry 

innovation network systematically differs from a pure random network. 

In order to check for small-world properties of the laser networks we 

employ the method proposed by Watts and Strogatz (1998). We begin 

with repeatedly generating Erdös-Renyi random graph networks8 which 

are comparable to the real-world network graphs in terms of size and 

density. In a subsequent step, we calculated clustering coefficients and 

average path-lengths for the German laser industry innovation network 

and its random counterparts. Finally, we repeated this procedure for each 

                                            

7 Note that the Barabasi-Albert model reproduces these structural characteristics at the 
system level quite well (cf. Appendix I).  

8 In its most basic sense a random network is defined as a system consisting of a well-
defined number of nodes. The attachment logic is quite simple. Nodes attract ties with the 
same probability and there is no systematic bias.  
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of the networks in the nine sub-periods; the results are reported in Figure 

2b. The graph on the left hand side reports the average path-length, while 

the illustration on the right gives the clustering coefficient for both the real 

world network and the random benchmark over time. As expected, the 

average path-lengths of the real-world network are much lower compared 

to the random benchmark. The clustering coefficients of the real-world 

networks are highly volatile oscillating around the value of about 1.0 with 

no clear time-trend. In contrast, the clustering coefficients of the random 

network range at a much lower level with a tendency to decrease over the 

observation period. 

Last but not least, we address the question as to what extent the 

German laser inventor networks shows core-periphery properties. The 

core-periphery concept is based on the notion of “[...] a dense, cohesive 

core and a sparse, unconnected periphery” (Borgatti and Everett 1999, 

375). Technically speaking, the specification of a network core is nothing 

else but the specification of a cohesive subgraph by using concepts such 

as n-cliques, k-plexes, k-cores and related concepts (Doreian and 

Woodard 1994, 269). There is, however, still no consensus in the literature 

on how to identify core-periphery patterns (cf. Kudic et al. 2015). 

We employ the k-core concept and analyze how the k-cores 

distribution over all inventors in the network changes over time. A k-core is 

defined as “a subgraph in which each node is adjacent to at least a 

minimum number, k, of the other nodes in the subgraph” (Wasserman and 

Faust 1994, 266). Figure 4c provides the results. We find a highly unequal 

distribution of coreness values over time. The high and increasing 

dispersion between low level coreness values (i.e. coreness_1-2 and 

corness_3-4) and high level coreness values (i.e. coreness_9-10 and 

corness_11-12) indicates the presence and solidification of a core-

periphery structure over time.  

To sum up, the results of these basis explorations at the overall 

network level are in-line with what can be expected based on the 

theoretical considerations outlined above (Section 2). However, results of 
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most recent studies (Garas et al. 2014) cast some serious doubt on the 

assumption of micro-level stability. This raises the question if these 

typically emerging overall network patterns are accompanied by stable 

structures at the level of individual actors and cooperation ties? In how far 

does this assumption of micro-stability hold? 

5. Taking a closer look at the micro-level 

In this section we focus on the micro level relationships. We start with 

analysis at the node level and explore the reoccurrence of actors over time 

by comparing the number of identical nodes for each sub-period with the 

all subsequent observation windows.  

Table 2: Node re-occurrence for the full population of inventors  

  
1961-
1965 

1966-
1970 

1971-
1975 

1976-
1980 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

1961-
1965 

-- 8.54 3.80 0.72 0.94 0.00 0.11 0.08 0.16 

1966-
1970 

199 -- 10.13 5.49 3.25 1.04 0.84 0.38 0.15 

1971-
1975 

237 306 -- 13.02 6.78 2.49 1.41 0.88 0.14 

1976-
1980 

277 346 384 -- 11.03 4.50 2.71 1.14 0.56 

1981-
1985 

424 493 531 571 -- 9.28 4.50 2.96 1.59 

1986-
1990 

697 766 804 844 991 -- 10.95 5.58 3.69 

1991-
1995 

885 954 992 1032 1179 1452 -- 10.71 6.00 

1996-
2000 

1261 1330 1368 1408 1555 1828 2016 -- 12.54 

2001-
2005 

1277 1346 1384 1424 1571 1844 2032 2408 -- 

 
 

Table 2 reports the number of identical nodes (inventors) across the 

different sub-periods for the entire network. The values in the lower part 

below the diagonal report the number of inventors for two compared time 

periods. The values above the diagonal line are the shares of identical 
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actors (in percentage terms) for two compared time periods. Surprisingly, 

we find a very low level of structural stability at the node level.   

All in all, the results are quite remarkable. The maximum share of 

identical actors in two subsequent time periods is only 13.02 percent. This 

share strongly converges towards zero with the time distance between the 

sub-periods periods. This rather high fluctuation of network nodes 

(inventors) over time indicate a low structural stability at the node level. 

 

 

Figure 3: Degree of cooperation redundancy, 1961 – 2005 
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The analysis of node reoccurrences does, however, reflect only a part of 

the story. A second important issue is the stability of ties among the 

actors. Figure 3 provides a differentiated picture of the degree of 

redundant linkages over the entire observation period. 

The histograms illustrate the degree of redundancy for each of the 

nine periods (figures are reported in the table below). A degree of 

redundancy of 4 means that there are four ties between a pair of network 

nodes. Not surprisingly, double bonds (degree of redundancy = 2) appear 

most frequently, while pairs of nodes that are connected by 9 or more 

redundant ties occur only very rarely (cf. periods: 66-70; 91-95; 96-00; 01-

05). In other words, redundant cooperation structures are rather rare; they 

can be typically identified at the dyadic level.  

Let us now briefly recapitulate the results from the overall network 

redundancy analysis in Section 4 (cf. Figure 2c). We found—with some 

minor exceptions—a high level of efficiency indicating that the degree of 

redundant connections is remarkably low, but we had no explanation for 

the peak in terms of network redundancy in the sub-period 1976-80. Our 

tie redundancy analysis at the micro level may provide some reasons why 

the German laser industry innovation network shows this structural 

pattern. Table 3 reports for each degree of redundancy in terms of 

percentages. The maximum percentage terms (for each degree of 

redundancy class) are highlighted in italics. The average percentage 

values over the entire observation period are reported in the right column. 

What stands out in the period 1976-1980 is the fact that dyadic 

linkages do not play a dominant role in maintaining structural stability in 

terms of redundancy. Instead, constellations of actors consisting of three 

redundant ties (7.58%) and constellations of actors with four redundant 

ties (1.47%) seem to be the sources of structural stability in the sub-period 

1976-80. Not only the period 1976-80, but also the preceding period 

(1971-75), as well as the succeeding period (1981-85) are characterized 

by an above average degree of redundancy at the overall network level 

(Figure 2c). Our micro-level exploration shows that the drivers behind 
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these patterns are very different. In the period 1971-75 the above average 

level of overall network redundancy is driven by a high number of double 

bonds. In the second case, the 1981-85 period, the above average level of 

overall network redundancy is driven by a comparatively small number of 

highly redundant interconnected pairs of inventors. 

Table 3: Degree of redundancy in percentage terms, 1961 – 2005 

     
61-
95 

66-
70 

71-
75 

76-
80 

81-
85 

86-
90 

91-
95 

96-
00 

01-
05 

Total number of 
ties:   86 205 278 409 643 1135 1888 2615 2922 

Number of unique 
pairs: 64 140 203 273 491 908 1332 2166 2360 

           Average

Degree of 
redundancy (%) 2 10.47 6.83 12.59 10.02 9.64 10.57 6.57 7.72 9.10 9.28 

3 3.49 3.90 2.88 7.58 1.24 2.11 2.22 1.91 1.44 2.98 

 4 1.16 1.46 1.44 1.47 0.78 0.62 0.79 1.07 0.99 1.09 

 5 1.16 0.98 1.08 0.49 0.78 0.26 0.53 0.23 0.24 0.64 

 6 0.00 0.98 0.00 0.00 0.62 0.09 0.37 0.04 0.38 0.27 

 7 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.11 0.03 0.05 

 8 0.00 0.00 0.00 0.24 0.16 0.26 0.05 0.00 0.14 0.09 

 9 0.00 0.49 0.00 0.00 0.00 0.00 0.11 0.08 0.03 0.08 

Overall degree of 
redundancy:   

16.28 14.63 17.99 19.80 13.53 13.92 10.65 11.17 12.35 

Standard.deviation   3.61 2.37 4.30 3.99 3.24 3.64 2.24 2.64 3.10 

 

Last but not least, we investigate how frequently connections 

between pairs of actors are stable over time (Figure 4). Thus, for a moving 

reference period (from 1966-70 until 2001-05) we explored as to what 

extent linkage between inventors have already existed in previous 

observation periods (Figure 4). The cooperation patterns shown by Figure 

4 can be interpreted as the total cooperation duration between pairs of 

actors. The exploration nicely shows that the inter-temporal connectivity of 

the German laser industry innovation network is comparably high in the 

directly preceding period (cf. reference year: 1981-85) but much lower in 

earlier periods. The existence of repeated ties reaches back for a 
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maximum of only three prior periods (cf. reference years: 1991-95; 1996-

00; 2001-05). Very rarely do we see a repeated linkage earlier than that 

(cf. reference year: 1986-90).  

 

Figure 4: Repeated ties (cooperation sequences), 1961 – 2005 
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6. Discussion and conclusions  

At the very heart of this paper we addressed the question as to what 

extent the widespread preferential attachment assumption provides an 

appropriate explanation for the emergence of typical pattern formation in 

R&D networks. The answer to this question is as simple as it is surprising: 

preferential attachment plays no significant role at the micro level. Instead, 

we observe an extremely high level of fluctuations both at the node level 

and at the tie level. This insight is based on longitudinal explorations of 

structural inventor network characteristics based on patent application 

data in German Laser research. Our data covers a period of forty-five 

years starting with the inception of this research field in 1961 until 2005.  

Our analyses at the overall network level reveal some interesting 

insights. We found that the propensity for co-inventorship, as well as the 

average size of inventor teams, did considerably increase over time. The 

development of basic network properties (Figure 1) indicates a high level 

of structural stability. The inventor network of German laser research 

exhibits a fat-tailed degree distribution, shows a core-periphery structure, 

and has typical small-world properties. At least at first glance these results 

indicate a high level of structural stability at higher aggregation levels. In 

particular, these patterns are perfectly in line with the preferential 

attachment logic and economic reasoning on transaction-costs and trust 

building processes through repeated and redundant cooperation activities 

among same actors. However, zooming into the micro-level provides a 

completely contradictory picture. Our explorations at the micro-level show 

a very low degree of node reoccurrence over time. The same holds true 

for the tie dimension. We found an extremely low level of redundant and 

repeated cooperation activities.  

All in all, our analyses show that the links between inventors in 

networks, based on patents, are characterized by a high level of instability 

at the micro-level. Obviously such networks are highly volatile and 

transient so that the resulting network graphs and parameters have to be 

regarded as snapshots of a highly dynamic process. The picture of a high 
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level of structural stability that is found at the overall network level is 

deceptive as it conceals high levels of intertemporal fluctuations of both 

nodes and ties under the surface of the system.  

What certainly can be learned from this exercise is that the well-

known preferential attachment mechanism—frequently applied to explain 

pattern formation in real-world networks—plays no significant role in the 

inventor network of the German laser industry. Our findings are in line with 

Garas et al. (2014, 4) who found that “[…] even if new nodes have the 

preference (and the incentive) to create links with central nodes, in reality 

they end up linked with other new nodes (i.e. nodes with similar centrality) 

or with the less central existing ones.” Obviously, not the preferential 

attachment rule but other rationales and mechanisms at the micro-level 

seem to fuel the typical pattern formation processes in the patenting 

networks of German laser research. Our result is also consistent with the 

findings of Powell et al. (2005) who argued that exploration-based 

cooperation strategies of actors seem to generate a much more robust 

explanation for network evolution processes than exploitation based 

strategies such as a multiconnectivity attachment mechanism. 

Currently, not much is known about more realistic attachment rules at 

the micro-level of R&D networks (the most notable exception is Powell et 

al. 2005). Despite of the huge interest in network evolution processes we 

are still at the very beginning of understanding how micro-level processes 

affect the structuration and dynamics of complex systems. Based on the 

current state of knowledge we also can only speculate in how far a high 

level of network fluidity has to be judged as positive or negative for the 

generation and diffusion of knowledge. On the one hand, high flexibility in 

the formation of inventor teams may indicate an effective allocation of 

talent and a fast diffusion of knowledge. On the other hand, weak ties 

between inventors may not involve much trust and can have their limits 

with regard to the quality of the knowledge exchange. 
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Figure A1: Artificial network – „Erdös-Renyi“ vs. „Barabasi-Albert“ model 
Source: Simulation model applied in: Müller et al. (2015) 
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