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Abstract

The traditional approach to measuring allocative efficiency exploits input prices, which are rarely known at the firm level. This paper
proves allocative efficiency can be measured as a profit-oriented distance to the frontier in a profit-technical efficiency space. This new
approach does not require information on input prices. To validate the new approach, we perform a Monte-Carlo experiment providing
evidence that the estimates of allocative efficiency employing the new and the traditional approach are highly correlated. Finally, as an
illustration, we apply the new approach to a sample of about 900 enterprises from the chemical manufacturing industry in Germany.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A significant number of empirical studies have investigated the extent and determinants of technical efficiency
within and across industries (e.g., Alvarez and Crespi, 2003; Caves and Barton, 1990; Gumbau-Albert and Maudos,
2002; Green and Mayes, 1991; Fritsch and Stephan, 2004). Comprehensive literature reviews of the variety of
empirical applications are made by Lovell (1993) and Seiford (1996, 1997). Compared to this literature, attempts to
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lists more than 3000 references, 1200 of these are published in good quality journals (see Tavares, 2002), Gattoufi et al. (2004) claims that the literature
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monographs.

0264-9993/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.econmod.2008.02.001


mailto:obadunenko@diw.de
mailto:m.fritsch@uni-jena.de
mailto:andreas.stephan@ihh.hj.se
http://dx.doi.org/10.1016/j.econmod.2008.02.001

1094 O. Badunenko et al. / Economic Modelling 25 (2008) 1093—1109

quantify the extent and distribution of allocative efficiency are relatively rare (e.g., see a survey by Greene (1997)).
Many more studies analyze the financial sector (see the review by Berger and Humphrey (1997) and also Topuz et al.
(2005), Fare et al. (2004), Isik and Hassan (2002)). Some studies have been performed for the agricultural sector (e.g.,
Coelli et al., 2002; Chavas and Aliber, 1993; Chavas et al., 2005; Grazhdaninova and Zvi, 2005). Studies for
manufacturing sector are relatively rare (e.g., Burki et al., 1997; Kim and Gwangho, 2001). This is quite surprising
since allocative efficiency has traditionally attracted the attention of economists and business managers: what is the
optimal combination of inputs so that output is produced at minimal cost? How much could the profits be increased by
simply reallocating resources? To what extent does competitive pressure reduce the heterogeneity of allocative
inefficiency within industries? Moreover, allocative efficiency is also important for the analysis of the production
process; e.g., to estimate the bias of (i) the cost function parameters, (ii) returns to scale, (iii) input price elasticities, and
(iv) cost-inefficiency (Kumbhakar and Wang, 2006) or to validate the aggregation of productivity index (Raa, 2005).

A firm is said to have realized allocative efficiency if it is operating with the optimal combination of inputs given
input prices. The traditional approaches® to measuring allocative efficiency require input prices (see Atkinson and
Cornwell, 1994; Greene, 1997; Kumbhakar, 1991; Kumbhakar and Tsionas, 2005; Oum and Zhang, 1995) which are
hardly available in reality. This explains why empirical studies of allocative efficiency are highly concentrated on
certain industries, particularly banking, because information on input price can be readily obtained for these industries.

Recently, more attempts to measure allocative efficiency have been advanced. For example given incomplete input
price data information, Kuosmanen and Post (2001) put forward a methodology to derive the upper and lower bounds of
overall efficiency. Their technique makes an additional assumption that prices are within a convex polyhedral cone.
Kuosmanen et al. (2006) continue by taking advantage of the law of one price, which is theoretically asserted to hold in
the competitive market. The authors, while acknowledging that the input price vector is often not observed, consider the
whole price domain instead of separate single input price vectors. The derived domain includes relative price
restrictions, which allow them to obtain an upper bound of efficiency via maximization in terms of input prices that are
endogenously chosen from the domain. Camanho and Dyson (2005) and later Jahanshahloo et al. (2008) have developed
ways to measure upper and lower bounds for allocative efficiency when some information of input prices is known.

The major virtue of current article is that it introduces a new approach to estimating allocative efficiency, which is
solely based on input and output quantities and profits and does not require information on input prices. An indicator
for allocative efficiency is derived as the profit-oriented distance to a frontier in a profit-technical efficiency space.

What is, however, needed is an assessment of input-saving technical efficiency; i.e., how less input could be used to
produce given outputs. This new approach rests on an assumption of the law of one price, or competitive market
equilibrium in which all firms face the same input and output prices. The possibility of explore allocative efficiency as a
part of overall efficiency when prices are the same across all firms was studied by Walter Briec and Leleu (2003), Li
and Ng (1995), and Ylvinger (2000). However, one way or another, these studies use inputs prices to retrieve allocative
efficiency measure. What is remarkable about the approach we propose is that it does not use them explicitly.

The paper unfolds as follows: Section 2 theoretically derives a new method for estimating allocative efficiency and
introduces a theoretical framework for activity analysis models. Section 3 presents the results of the Monte-Carlo
experiment on comparison of allocative efficiency scores calculated using both traditional and new approaches. Section 4
provides a rationale and a simple illustration using the new approach; Section 5 concludes.

2. Measurement of allocative efficiency
2.1. Traditional approach to allocative efficiency measurement

In his seminal paper, Farrell (1957) used the concept of efficiency postulated by Koopmans (1951) and the radial
type of efficiency measure considered by Debreu (1951) to introduce the foundation for efficiency analysis. He
differentiated between technical and allocative efficiencies. A firm is technically efficient if it uses the minimal possible
combination of inputs for producing a certain output (input orientation). Allocative efficiency, or as Farrell called it
price efficiency, refers to the ability of a firm to choose the optimal combination of inputs given input prices. If a firm
has realized both technical and allocative efficiency, it is then cost efficient (overall efficient).

* This includes retrieving allocative efficiency using shadow prices (see Greene, 1997; Lovell, 1993).
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Fig. 1, similar to Kumbhakar and Lovell (2003), shows firm A producing output y* represented by the isoquant
L(y™). Dotted lines are the isocosts which show level of expenditures for a certain combination of inputs. The slope
of the isocosts is equal to the negative of ratio of input prices, w(w;, w,). If the firm is producing output y* with the
factor combination x* (a in Fig. 1), it is operating technically inefficient. Potentially, it could have produced the
same output contracting both inputs x; and x, (available at prices w), proportionally (radial approach); the smallest
possible contraction is in point b, representing (6x”) factor combination. Having reached this point, the firm is
considered to be technically efficient. Formally, technical efficiency is measured by the ratio of the lowest attainable
input level for producing a given amount of output to the current input level. In terms of Fig. 1, technical efficiency
of unit x* is given by

w (HxA )
wxA

: (1)

or geometrically by 06/0a. The measure of cost efficiency (overall efficiency) is given by the ratio of potentially
minimal costs to actual costs:

TE(",x*) =0 =

E
wx

CE()/AaxA7WA) :W7 (2)
or geometrically by Oc/0Oa. Thus, cost efficiency is the ratio of costs at x* to costs at x* while technical efficiency is
the ratio of costs at (6x™) to costs at x™. The remaining portion of the cost efficiency is given by the ratio of costs at
x" to costs at (9x™). It is attributable to the misallocation of inputs given input prices and is known as allocative
efficiency:

_CE_ wxP/ux?
AE T TE  w(xA)/wxA’ 3)

or is given geometrically in terms of Fig. 1 by 0c/0b.
2.2. A new approach to allocative efficiency measurement

When input prices are available, allocative efficiency in the pure Farrell sense can be calculated using, for example,
anon-parametric frontier approach (Fire et al., 1994) or a parametric one (see Greene, 1997 among others). However, if
input prices are not available these approaches are not applicable. In contrast to this, the new approach we propose
allows measuring allocative efficiency without information on input prices. An estimate of allocative efficiency can be
obtained with the new approach that is solely based on information on input and output quantities and on profits. The

X2

X1

Fig. 1. Measurement and decomposition of cost efficiency.
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L(y*)
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Fig. 2. Bound of a profit.

first step of this new approach involves the estimation of technical efficiency; whereby, in the second step allocative
efficiency is estimated as a profit-oriented distance to the frontier in a profit-technical efficiency space.
Several assumptions are needed to prove our conjecture.

Al. The technology is homogeneous of degree 1: f (tx)=¢ f (x) (see Varian, 1992, p. 18).
A2. Firms face equal input prices w and equal output prices p.
A3. Profit is expressed in relative terms in order to prevent size effects.”

Proposition 1. Existence of the frontier in profit-technical efficiency space. A profit maximum exists for any level of
technical efficiency.

Proof. In Fig. 2, three firms, A, B, and C using inputs x™, x® and x©, available at prices w, produce output y*, which is
measured by the isoquant L(y™). We will relax the assumption that firms are producing the same output shortly. For the
sake of argument, firms A, B, and C are all equally technically efficient (the level of technical efficiency 0, however, is
arbitrarily chosen), which is read from expenditure levels at (9x™), (0x®), and at (0x©), respectively. In geometrical terms
0b™/0a™=0b/0a®=0b/0a". The costs of these three firms are determined by wx™, wx®, and by wx®. The isocost
corresponding to expenditures at x© is the closest possible to the origin 0 for this level of technical efficiency and, therefore,
implies the lowest level of costs. This is because x° is the combination of inputs lying on the ray from origin and going
through the tangent point of the isocost (corresponding to cost level of wx®) to the isoquant L(y™). This implies that for 0-
level of technical efficiency costs have a lower bound and using the fact that firms are producing the same output y**, profit
has an upper bound, given Assumptions A2 and A3. Without loss of generality, for each level 6 of technical efficiency
there is a profit maximum, which proves the existence of a frontier in profit-technical efficiency space. ]

Remark 1. Proposition 1 is valid for different outputs.

Proof. InFig. 3, two firms, A and C (from Fig. 2) produce output y*; two other firms, F and G, use inputs x™ and x to
produce output y®, which is measured by the isoquant L(»®). Output levels y* and »® are chosen arbitrarily. All four
firms are equally technically efficient. Let us compare profits of firms A and F, and of firms C and G.

At the output level y* firm C has the largest profit, whereas firm G has the largest profit at the output level y®. Given
Assumptions Al, A2, and A3 the profit of firm A is equal to the profit of firm F. This is due to the fact that revenues and
costs increase by the same proportion as inputs do (Assumption A1). By the same logic, the profits of firms C and G are
equal. Thus, despite producing different output both firms C and G are on frontier defined in Proposition 1. ]

Note that this remark holds for any set of different output levels.

* In our theoretical derivation, in the Monte-Carlo study, and in the empirical illustration we define profit as follows: profit=(revenues—costs)/
revenues.



O. Badunenko et al. / Economic Modelling 25 (2008) 1093—1109 1097

L(y")
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Fig. 3. Profit at different output levels.

Remark 2. Frontier in profit-technical efficiency space is sloped upwards.

Proof. InFig. 4, two firms, C and D, use inputs x* and x" to produce output y*, which is measured by the isoquant L(y").
Both firms are allocatively efficient because they lie on the same ray from the origin that goes through the tangent point x*;
thus, in terms of Proposition 1, we only look at the frontier points. These firms operate, however, at different levels of
technical efficiency, 0 and 6°, respectively. Since the isocost representing the level of costs wx© is closer to the origin
than that of the expenditure level wx®, costs of firm C are smaller than those of firm D, while firm C is more profitable than
firm D. Since 06°/0a“ >06/0a®, 6> 6P, larger technical efficiency is associated with larger profits for points forming
the frontier in profit-technical efficiency space. This proves that such frontier is upward sloping. ]

Proposition 2. The higher the allocative efficiency the higher the profit. For any arbitrarily chosen level of technical
efficiency, the closer the input combination to the optimal one (i.e., the larger the allocative efficiency) the larger the
profit will be.

Proof. Eq. (3) suggests that in terms of Fig. 2 (all three firms are equally technically efficient) costs solely depend on
allocative efficiency. Moreover, the smaller the allocative efficiency the larger the expenditure. Keeping in mind that
these firms produce the same output y*, we conclude that for f-level of technical efficiency (again chosen arbitrarily)
the larger the allocative efficiency the lower the costs and the larger the profit is; as allocative efficiency reaches its
maximum (for firm C), the maximal profit is also achieved. Without loss of generality, this statement is true for any
level of technical efficiency. O

L(y*) ."'-._be

X2

xq

Fig. 4. Relationship between technical efficiency and profit.
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Fig. 5. Allocative efficiency in profit-technical efficiency space.

Remark 3. Proposition 2 is valid for different outputs.

Proof. Using the result of Remark 1, we claim that given technical and allocative efficiency the profit does not depend
on output. It implies that regardless of produced output level for all equally technically efficient firms the same
allocative efficiency purports the same level of profit. Recall pairs A and F, C and G from Fig. 3. Since allocative
efficiency and profit of firms A and F are smaller than allocative efficiency and profit of firms C and G, the larger
allocative efficiency is associated with larger profit. ]

Proposition 3. Allocative efficiency in profit-technical efficiency space. Profit-oriented distance to the frontier in
profit-technical efficiency space measures allocative efficiency.

Proof. In Fig. 5 frontier is the locus of the maximum attainable profits as defined in Proposition 1. The firms A(F), B,
and C(G) have the same technical efficiency level TE®; however, they have different profit levels: m;, 7,, and 7,
respectively. The potential level of profit, which firms can reach is 7. The closer the observation is to the frontier, the
larger the profit is. As we recall from Fig. 2, the shift from firm A(F) to firm C(G) is only possible when the input-mix is
changed; i.e., the allocative efficiency is improved. Thus, in Fig. 5, the shift from firm A(F) to firm B means an increase
in allocative efficiency (distance AE” is larger than distance AE®), and further increase in allocative efficiency at the
same level of technical efficiency is only possible up to the level of firm C(G), for which both profit and allocative
efficiency are at the maximum. Without loss of generality, we can find as many firms between A and C as we may
require, which ensures monotonic relationship between allocative efficiency and profit given technical efficiency.
Since the level of technical efficiency is chosen arbitrarily, this Proposition holds on entire range of possible levels of
technical efficiency. Thus, which is most remarkable, the distance from the observation to the frontier serves as a
measure of allocative efficiency. Since we use pair A and C and pair F and G interchangeably, the proposition is valid
for different levels of produced output. 0

Although two-inputs-one-output setup was used for illustration purposes because of its graphical simplicity, it is
interesting to note that the generalization to the multivariate framework of the new approach is straightforward. In
Fig. 2, the two-dimensional {x;—x,) space is substituted by the n-dimensional {x;—x,— ... —x,,) space of n inputs, X. At
the same time, the isoquant curve’ L(y™) representing one output is substituted by an isoquant hypersurface of
dimension (n—1) representing m outputs, ). The isocosts become hyperplanes. Although impossible to build a picture,
the multivariate setup works just the same as the two-inputs-one-output case, which we used here for the sake of proof.

3 In our case it is a curve is because the dimension of hypersurface

IsoqL(Y) = {X : XeL(Y), .XeL(Y)for .0, 1)},

is equal to the number of inputs minus one.
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Multivariate framework is only used to retrieve technical efficiencies, whereas the profit-oriented distance, the new
measure of allocative efficiency is found in the two-dimensional space (profit-technical efficiency) irrespective of
inputs and outputs dimensionality.

To summarize, we have defined a new way of estimating allocative efficiency, specifically, this is the profit-oriented
distance to the frontier in profit-technical efficiency space.

2.3. Assessments of restrictiveness of Assumptions A1-A3

A1l. Might be a restrictive assumption in empirical applications (see for example Varian, 1992, pp. 15—16 for possible
violations of this assumption). From a theoretical point of view this assumption is justified by the existence of
competitive input and output markets.

A2. The assumption on equal input prices is necessary to ensure that isocosts are parallel to each other. Moreover, it
guarantees that the difference between revenues and costs increases by the same proportion as revenues. The following
reasoning justifies this assumption. We implicitly assume that input prices clear the resource market in terms of quality
(e.g., Blanchard et al., 1992). This means that if input prices w' are larger than w then their quality is better and these
resources are more productive than those available at price w. That is why resources are input prices w' represent
different technology, which is superior. On the other hand, if input prices w” are lower than w, the quality of resources
available at w? is lower and technology, which they represent, is inferior. In the Monte-Carlo experiment we relax the
assumption of equal input prices in order to test whether the new approach still yields valid estimates of allocation
efficiency. The assumption of equal output price is based on the same reasoning. That a firm is facing larger output
prices implies that outputs are of better quality, which would purport a superior technology. And vice versa, that a firm
is receiving lower output prices, implies worse quality of output, which is produced using inferior technology. See also
the discussion in Kuosmanen et al. (2000).

A3. This assumption is not restrictive, but rather provides flexibility. Indeed, to avoid size effects, different relative
measures of profit can be used in empirical applications: ratio of revenues to costs, ratio of difference between revenues
and costs to costs or to revenues etc.

3. Monte-Carlo simulation

To analyze the tractability of the new approach to measuring allocative efficiency, we conducted several Monte-
Carlo experiments. The traditional approach requires data on inputs, outputs, and input prices; for the new approach
data on inputs, outputs, and profits are needed. Generating simulated data, which contains all required information
allows computing and comparing allocative efficiency score using both approaches.

3.1. Empirical implementation of the traditional approach

The traditional approach can be used when input prices are known. For m outputs, ), and » inputs, X, under
technology 7 such that

7 ={(X,)) : X canproduce YV}, (4)

we measure input-oriented technical efficiency as the greatest proportion that the inputs can be reduced and still
produce the same outputs:

F'(Y,X) = inf {4 : AX canstill produce V}. (5)

In the Monte-Carlo simulations as well as in empirical part based on real data, we employ the Data En-
velopment Analysis (DEA).® For K observations, M outputs, and N inputs an estimate of the Farrell Input-Saving

6 See Kneip et al. (1998, 2003) for statistical properties of DEA.
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Measure of Technical Efficiency can be calculated by solving a linear programming problem for each observation

j (j=L..., K):

o~

K K
TE; = F}(y,x|C) = min{i : Z Z1Vkm = yJ’Z Xy < X2 2 0}, (6)
k=1 =1

for m=1,..., M and n=1,..., N. Note that superscript i stands for input orientation while C denotes constant returns
to scale. Other returns to scale are modeled adjusting process operating levels, z;s (see Fiare and Primont, 1995 for
details).

When input prices and quantities are given, we can calculate the total costs and the minimum attainable cost (solve
linear programming problem) and then compute an estimate of cost efficiency for each observation j (j=L..., K) as in

Eq. (2):

. N LK K
mln{zn:] WinXjn Zk:l Zk/ykm > yﬁZk:l Zk’xk,, < Xj,Zk’EO}

Cl(y,x,w|C) =
’ St Winn

: ()

for m=1,..., M and n=L,..., N. Here, zjs denote individual intensity variables, which are obtained when solving the
efficiency problem. We refer to the residual of technical and cost efficiencies as Input Allocative Efficiency, which can
be computed for each observation j ( j=L..., K) as:

. Ci(y,x,w|C
AE;(y,x,w|C) = M (8)
Fi(y,x|C)

3.2. Empirical implementation of the new approach

As mentioned above, the main virtue of the new approach is that we do not necessarily need input prices for
measuring allocative efficiency. Technically, we need profit-oriented distances to the frontier in the profit-technical
efficiency space. We take advantage of the technical efficiency estimates (denoted by TE) obtained as in Eq. (6) and
profitability measure (denoted by Pr) to calculate profit-oriented distance to the frontier in profit-technical efficiency
space as theoretically derived in Section 2. Solving linear programming problem for each observation j ( j=L..., K), the
allocative efficiency is given by:’

K K
AE!(y,x|C) = max{e Y 2k Pr = P> Z/ TE, < TE 0} (9)
k=1 k=1

Similar to Egs. (6) and (7), z/s denote individual intensity variables for a particular (for observation j) linear
programming problem.

Although we present Monte-Carlo evidence based on two-inputs-one-output setup, we have explained in the
theoretical part that the new approach is able to accommodate multivariate cases as well as the traditional one. The new
approach resides on the calculation of technical efficiency scores, which are easily computed in the multivariate
framework.

7 It remains to be studied empirically, which returns that scale assumption has to be made here. This can be done by applying, for example,
nonparametric test of returns to scale developed by Simar and Wilson (2002). To reduce computational burden, we leave this to be investigated
further and are interested now in how the new measure works under CRS assumption.
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3.3. Design of the Monte-Carlo experiments

In the experiments we simulate data on inputs, output and input prices. From these variables we compute revenues
by setting the output price to a numeraire equal to one and obtain profits by dividing the difference of revenues and
costs by revenue (see Assumption A3). We obtain two datasets by this simulation: dataset (1) with information on
inputs, output, and input prices which is required for the traditional approach and dataset (2) with information on
inputs, output, and profit revenue share which is required for measuring AE with the new approach. Note that although
in dataset (2) profit is calculated using input prices, they are however not used in retrieving allocative efficiency
measures with the new approach.

In each of the Monte-Carlo trials, we define a production process which uses two inputs to produce one output. Data
for the ith observation in each Monte-Carlo experiment were generated using the following algorithm.

(i). We chose output elasticities of two inputs to be 0.2 and 0.8.*

(ii). Draw x;~(@+ A - uniform); uniform on the interval [0;1].

(iii). Draw r~uniform; uniform on the interval [0;8]. This is meant to be an experimental ratio of used inputs.

(iv). Set x,=rx;.

(v). Choose €. In doing so, we allow the ratio of inputs in each Monte-Carlo trial to vary on the interval [&; 8 —£].
Therefore, we obtain enough variation of inefficient combinations of inputs, or in other words, enough variation
of allocative inefficiency.

(vi). Draw u~N" (0, o2) and set ‘te_drawn’ equal to exp(—u).

(vii). Generate output data assuming translog production function, which will contain inefficiency component:’

1 1
Iny; =0.2 Inx;; + 0.8 Inx, + 7Y In%x); + V2 In%xy; + vy, Inxy; Inxy; + te_drawn,, (10)

The chosen parameter values ensure homogeneity of degree one. We run the simulations with N=100 and with
N=400.
(viii). Draw price of input x;: w;~ (¢ + ¢ - uniform), uniform on the interval [0;1]. The price of input x;, is calculated as
w,=60w,—we want to keep the ratio of input prices constant to have the isoquants parallel (recall Fig. 2)."°
(ix). Set profit as output (we set output price equal to 1) minus cost and this is divided by output. This is a relative
measure as in Assumption A3: (revenue—costs)/costs.
(x). Run DEA to obtain traditional allocative efficiency as in Eq. (8).
(xi). Run DEA to obtain the new measures of allocative efficiency using technical efficiency drawn in step (vi) as in
Eq. 9).
(xii). Solve for technical efficiency as in Eq. (6), and run DEA to obtain the new measure of allocative efficiency using
these solved technical efficiency scores.
(xiii). Calculate rank correlation coefficient between allocative efficiency estimates based on traditional and our
approaches.
(xiv). Repeat steps (i) through (xiii) L times.

In each of our experiments we set =1, A=7, =1, 4=0.05, 7;;=0.01, y,,=0.01, and Y1,=—0.02."" In order to look
at different variabilities of inappropriately chosen ratios of inputs, we set €=0.5, 1, 2. With £€=2, variability of
allocative efficiency expected to have been reduced considerably—range becomes [2;6]; and vice versa, £€=0.5
ensures very large variability—range increases to [0.5;7.5]. We conduct three sets of experiments setting o2 to 0.0025,

8 According to a micro-economic theory, a firm which chooses such combination of inputs, thus their ratio is equal to the ratio of output
elasticities of the respective inputs will be most profitable. When we speak of optimal combination of inputs, the original notion of allocative
efficiency comes into play, and we suggest that the closer the ratio of inputs to the ratio of elasticities the larger a firm’s allocative efficiency will be
(e.g., Chambers, 1988, chap.1).

? Since the DEA is deterministic, we do not incorporate a stochastic term in the Monte-Carlo trials.

1% In order to have a more realistic setup as might be necessary for empirical applications, we allow input prices to vary to some extent.

' The parameter values for @ and A restrict x; to be in [1, 8]. The parameter values for ¢ and i imply that w;, € [1, 1.05], so that the random deviations
from 1 are relatively small. Production elasticities 7}y, 7,, and 7}, were chosen to guarantee linear homogenous production technology. In sum, we have
chosen such parameter values that could be found in real-world firm data, but we also scaled the variables for computational purposes.
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Table 1

Means of rank correlations

on 0.0025 0.025 0.25

0 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl? 0.8566 0.7375 0.6954 0.8608 0.7326 0.6942 0.8087 0.6879 0.6413
0.0442 0.0625 0.0677 0.0434 0.0621 0.0686 0.0649 0.076 0.0772

Corr2° 0.8642 0.7485 0.7038 0.8695 0.7526 0.7115 0.8712 0.7885 0.7365
0.0416 0.059 0.0663 0.0407 0.0589 0.0664 0.0469 0.0687 0.0818

Corr3° 0.9899 0.988 0.9894 0.9915 0.9901 0.9895 0.9468 0.9419 0.9464
0.0194 0.0212 0.0188 0.0148 0.0159 0.0168 0.0531 0.0492 0.0397

Corr4 ¢ 0.8928 0.8937 0.8893 0.9524 0.9528 0.956 0.983 0.9816 0.9825
0.0409 0.0405 0.0423 0.0275 0.0268 0.0254 0.0124 0.0148 0.0141

£=0.5, N=100.

Standard errors are in italics.
? Corrl is the rank correlation between allocative efficiency calculated in step (x) and that calculated in step (xi),
® Corr2 is the rank correlation between allocative efficiency calculated in step (x) and that calculated in step (xii),
¢ Corr3 is the rank correlation between allocative efficiency calculated in step (xi) and that calculated in step (xii),
4 Corr4 is the rank correlation between technical efficiency calculated in Eq. (6) and that drawn in step (vi).

Table 2

Means of rank correlations

o2 0.0025 0.025 0.25

0 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl 0.8569 0.7043 0.6192 0.8519 0.6991 0.6053 0.7851 0.6381 0.5476
0.0412 0.0653 0.0744 0.0429 0.0685 0.0779 0.0706 0.0803 0.0838

Corr2 0.8611 0.7111 0.6264 0.8598 0.7197 0.6263 0.847 0.7481 0.6709
0.0393 0.0641 0.0722 0.0405 0.0654 0.0771 0.048 0.0753 0.0944

Corr3 0.9928 0.9922 0.9919 0.9912 0.9903 0.9889 0.9469 0.9356 0.9384
0.0163 0.0152 0.0157 0.0149 0.0146 0.017 0.053 0.0542 0.0419

Corr4 0.9183 0.9209 0.9196 0.959 0.9633 0.9626 0.9874 0.987 0.9869
0.0341 0.0344 0.0353 0.0278 0.0248 0.0254 0.0111 0.0111 0.0113

£=1, N=100.

Notes from Table 1 apply.

0.025, and 0.25; this ensures covering a plausible range of standard deviations of technical efficiency.'* In each
experiment we ran L =500 Monte-Carlo trials.'*

3.4. Results

From Tables 1-6 it is clearly seen that in all three cases the DEA estimates the drawn technical efficiency scores
fairly accurately—the rank correlation coefficient (Corr4) is close to one. This is an expected outcome since we do not
assume a stochastic term in the production output generation (step (vii) of the experiment). The same argument applies
to the rank correlation coefficient between allocative efficiency calculated in step (xi) and that calculated in step (xii)
(Corr3). Thus, there is not much difference in using the true or the estimated technical efficiency in the new approach.
However, what is most interesting to us are the rank correlation coefficients between allocative efficiency estimates
from the traditional and our new approach (Corrl and Corr2). Corrl has been computed with the estimates of allocative
efficiency based on “true” technical efficiency while Corr2 has been computed with the estimates of allocative
efficiency based on estimated values of technical efficiency. As previously mentioned, the rank correlation between
these measures is quite high (Corr3). We argue that it is more appropriate to draw conclusions from Corr2 since we do
not know the “true” technical efficiency in practice.

12 Using a different experiment, Greene (2005) obtains estimates of technical efficiency with standard deviations from 0.09 to 0.43.
13 The simulation is programmed in SAS 9.1.3; computationally, one run with N=100, L=500 takes about seven hours a Pentium IV processor
running at 3 GHz. Thus, we defined relatively few parameter constellations in the performed experiment.
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Table 3

Means of rank correlations

o 0.0025 0.025 0.25

[’} 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl 0.814 0.5782 0.3386 0.8042 0.5561 0.3168 0.6841 0.4515 0.2602
0.0453 0.0762 0.0835 0.0438 0.0794 0.0928 0.102 0.1063 0.0984

Corr2 0.8155 0.5837 0.3448 0.8091 0.575 0.3498 0.7638 0.6048 0.4864
0.0437 0.0738 0.0828 0.0425 0.0791 0.0937 0.0609 0.0992 0.1294

Corr3 0.9939 0.9948 0.9938 0.9917 0.9904 0.9878 0.9265 0.9117 0.9049
0.0144 0.0124 0.013 0.0152 0.0156 0.0202 0.0765 0.0838 0.0652

Corrd 0.9455 0.9449 0.9443 0.9749 0.9743 0.9731 0.991 0.9908 0.991
0.0283 0.03 0.03 0.0202 0.0197 0.0206 0.009 0.0089 0.0075

£=2, N=100.

Notes from Table 1 apply.

The first observation worth mentioning is that when variability of sub-optimal ratios decreases (€ increases), our
method is less successful in yielding similar estimates as the traditional one. Hence, under current CRS assumption (see
footnote 6) our method deteriorates in terms of exactness when “true” allocative efficiency is not heterogeneous.

Furthermore, the results show that our approach is robust with respect to variance of the drawn technical efficiency,
oo Looking closely at correspondent ratios, one can notice that for the same 0s Corr2 is increasing when o2 increases,
whereas for other @s Corr2 decreases when we increase o2; however, the changes are minor. The same argument
applies to the standard deviation of Corr2. This implies that for different levels of o2 distributions of Corr2 are virtually
the same. The skewness of the variable Corr2 is always negative and is about —0.6 which means that the distribution of
Corr2 is skewed to the left and more values are clustered to the right of the mean. Kurtosis is about 0.6, but it varies
more than the skewness; it increases with increase of o2. Kernel density estimates of Corr2 for the case §=0.75 are
shown in Fig. 6. Note that we use the Gaussian kernel function and the Sheather and Jones (1991) rule to determine the
“optimal” bandwidth.

The results are better when the sample size is increased to 400 (Tables 4—6). However, the improvement does not
change our main conclusions based on the experiments with sample size 100. As expected, standard deviations of rank
coefficients are almost halved when the sample size is quadrupled.

4. Empirical illustration of the new approach
In order to illustrate the usefulness of the new approach to measuring allocative efficiency we apply it to firm-level

data containing information on inputs, output and profitability but not on input prices. The aim of this exercise is to
perform a cost efficiency analysis for different size categories, which implies that cost, technical, and allocative

Table 4

Means of rank correlations

o’ 0.0025 0.025 0.25

¢} 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl 0.8812 0.7551 0.7132 0.881 0.7543 0.7126 0.8585 0.7297 0.675
0.0182 0.0288 0.0311 0.0173 0.0286 0.0297 0.0232 0.0308 0.0334

Corr2 0.8824 0.7567 0.7144 0.8828 0.7605 0.7173 0.8773 0.7675 0.7114
0.0176 0.0287 0.0307 0.0171 0.0281 0.0295 0.0211 0.0418 0.0412

Corr3 0.9987 0.999 0.9987 0.9988 0.9985 0.9986 0.9887 0.9856 0.987
0.0035 0.0031 0.0036 0.0028 0.003 0.0023 0.0122 0.0215 0.0095

Corr4 0.9726 0.973 0.9733 0.9909 0.9905 0.9904 0.9968 0.9969 0.9968
0.0096 0.0106 0.0099 0.0053 0.0063 0.006 0.0026 0.0025 0.0027

£=0.5, N=400.

Notes from Table 1 apply.
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Table 5

Means of Rank correlations

o 0.0025 0.025 0.25

0 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl 0.876 0.7169 0.6362 0.8734 0.7185 0.6309 0.8363 0.6754 0.5798
0.0178 0.0334 0.035 0.0186 0.0316 0.037 0.024 0.035 0.0402

Corr2 0.8766 0.7185 0.6375 0.8748 0.7247 0.637 0.8547 0.7185 0.6257
0.0176 0.0333 0.0349 0.0185 0.0313 0.0371 0.0214 0.0395 0.0501

Corr3 0.9992 0.9991 0.9992 0.9987 0.9984 0.9984 0.9882 0.9845 0.9853
0.0026 0.0028 0.0025 0.0029 0.0031 0.0031 0.0139 0.0144 0.0104

Corrd 0.9814 0.9809 0.9821 0.993 0.9932 0.9931 0.9978 0.9978 0.9977
0.0086 0.0086 0.0085 0.0049 0.0047 0.0049 0.002 0.0019 0.002

e=1, N=400.

Notes from Table 1 apply.

Table 6

Means of rank correlations

ol 0.0025 0.025 0.25

0 0.75 1 1.25 0.75 1 1.25 0.75 1 1.25

Corrl 0.8337 0.5911 0.341 0.8269 0.5692 0.3253 0.7463 0.4934 0.2858
0.0195 0.0361 0.0455 0.0205 0.0395 0.047 0.0359 0.0458 0.0476

Corr2 0.8339 0.5924 0.3422 0.8271 0.5752 0.3353 0.7661 0.5512 0.378
0.0192 0.0362 0.0455 0.0206 0.0393 0.047 0.0302 0.0485 0.0734

Corr3 0.9994 0.9994 0.9995 0.999 0.9986 0.9981 0.984 0.9777 0.9754
0.0025 0.0022 0.0017 0.0021 0.0028 0.0037 0.0175 0.0227 0.0195

Corr4 0.9884 0.9882 0.9879 0.9955 0.9955 0.9957 0.9985 0.9985 0.9985
0.0066 0.0071 0.0072 0.0037 0.0037 0.0033 0.0015 0.0014 0.0015

£=2, N=400.

Notes from Table 1 apply.

efficiency have to be estimated. It is obvious that traditional approach to allocative efficiency measurement would
preclude such analysis due to the fact that input prices are not available.

4.1. Data

The micro-data is drawn from the German Cost Structure Census'* of manufacturing for the year 2003. The Cost
Structure Census is gathered and compiled by the German Federal Statistical Office (Statistisches Bundesamt).
Enterprises are legally obliged to respond to the Cost Structure Census; hence, missing observations due to non-
response are precluded. The survey comprises all large German manufacturing enterprises which have 500 or more
employees. Enterprises with 20—499 employees are included as a random sample that is representative for this size
category in a particular industry. For more information about cost structure census surveys in Germany, we refer the
reader to Fritsch et al. (2004). Our sample comprises only enterprises from the chemical industry. The measure of
output is gross production. This mainly consists of the turnover and the net-change of the stock of the final products.'”

The Cost Structure Census contains information for a number of input categories.'® These categories are payroll,
employers’ contribution to the social security system, fringe benefits, expenditure for material inputs, self-provided
equipment, and goods for resale, for energy, for external wage-work, external maintenance and repair, tax depreciation

14 Aggregate figures are published annually in a panel-series 4, series 4.3 of the Cost Structure Census (various years). For more details on the Cost
Structure Census, see Appendix Al.

1S We do not include turnover from activities that are classified as miscellaneous such as license fees, commissions, rents, leasing etc. because this
kind of revenue cannot adequately be explained by the means of a production function.

1 Though the production theory framework requires real quantities, using expenditures as proxies for inputs in the production function is quite
common in the literature (see for example Paul et al., 2004; Paul and Nehring, 2005).
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Fig. 6. Estimates of Sampling Densities of Corr2 (0=0.75, L=500, £€=0.5, €=1 and £€=2). Note: In each panel the vertical dashed line is the mean
value of the corresponding density.

of fixed assets, subsidies, rents and leases, insurance costs, sales tax, other taxes and public fees, interest on outside
capital as well as “other” costs such as license fees, bank charges and postage, or expenses for marketing and transport.

Some of the cost categories which include expenditures for external wage-work and external maintenance and repair
contain a relatively high share of reported zero values because many firms do not utilize these types of inputs. Such
zeros make the firms incomparable and, thus, might bias the DEA results. In order to reduce the number of reported
zero input quantities, we aggregated the inputs into the following categories: (i) material inputs (intermediate material
consumption plus commodity inputs), (ii) labor compensation (salaries and wages plus employer’s social insurance
contributions), (iii) energy consumption, (iv) user cost of capital (depreciation plus rents and leases), (v) external
services (e.g., repair costs and external wage-work), and (vi) “other” inputs related to production (e.g., transportation
services, consulting, or marketing).

Profit is computed as one minus the total costs divided by the turnover. Since the DEA requires positive values, we
standar?ize the profit measure to the interval (0,1) by adding the minimum profit and dividing this by the range of
profits.'”

'7 In this way profit is in relative terms as the new approach requires.
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Fig. 7. Profitability plotted against estimated technical efficiency scores for about 900 German enterprises from the chemical industry.
4.2. Empirical results

Fig. 7 shows profitability plotted against estimated technical efficiency. Remarkably, a frontmer, as could be
theoretically expected from Proposition 1, indeed exists. It is also noteworthy that at a certain level of technical
efficiency profitability ranges greatly suggesting quite some variation in allocative efficiency (as firms A(F), B, and
C(G) in Proposition 3) and that the profits are bounded from above. Moreover, the frontier is positively sloped as
was stated in the first theoretical part of this paper. Interestingly, Fig. 7 suggests that even being 100% technically
efficient does not necessarily imply being 100% allocatively efficient.

Table 7 presents basic descriptive statistics for cost, technical, and allocative efficiency scores for the entire sample
and by size categories. Note that averages are weighted.'®

The average cost efficiency for the entire sample is quite low.'® The results from Table 7 imply that an “average”
German manufacturing firm could have reduced its costs by 47.7% by operating on the efficiency frontier. It is clear
that there are significant opportunities to reduce operating costs, however a deeper and dynamic analysis is required to
judge about the long-run performance of the industry. When we compare the performance of firm in different size
categories, small firms are better than average and moreover, they are outperforming larger counterparts. This better
performance of “small” firms, however, is not very pronounced.

The most remarkable result comes from the decomposition of cost efficiency. The most severe efficiency loss
happens as a result of technical inefficiency, which averages as high as 34.4%. This means that most German
manufacturing firms are rather not successful in operating close to the production frontier. As in the case with cost
efficiency, small firms are performing on average better than larger firms. The second source of loss in efficiency comes
from allocative inefficiency. The average allocative inefficiency is 19.4%, implying that German manufacturing firms
are not achieving cost minimizing combination of inputs. Since the figure is virtually the same for all-sized firms, the
argument holds correspondingly.

Note however, that this analysis of allocative efficiency is not exhaustive so far, since it is only based on cross-
sectionional data. Anandalingam and Kulatilaka (1987, p. 143) state:

Farrell (1957) noticed that “there remains the question of whether a high price (i.e. allocative) efficiency is
necessarily desirable.” He argued that in a dynamic context, firms may over invest in factors in the short-run in
order to achieve long-run goals and thus appear to be allocatively inefficient in a static sense.

'8 As shown by Fiire and Zelenyuk (2003) the simple averages of technical and allocative efficiency scores are misleading and weighted averages
have to be adopted instead.

!9 The studies that analyze cost efficiency in financial sector are frequent and appear persistently in refereed journals in various years; see, for
instance Akhavein et al. (1997), Lang and Welzel (1998) and up-to-date analysis by Weill (2004) and Cummins and Rubio-Misas (2006). The major
reason for that is availability of firm-level input prices in the industry. While cost efficiency analysis is particularly important for manufacturing, we
cannot compare our estimates to those of other studies, because such studies are extremely rare.
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Table 7
Descriptive statistics of cost, technical, and allocative efficiency *
Size category Type of efficiency N Mean S.D. Min Ql Median Q3 Max
Less than 49 employees Cost 205 0.570 0.117 0.183 0.498 0.566 0.640 1
Technical 205 0.703 0.150 0.357 0.600 0.683 0.809 1
Allocative 205 0.816 0.082 0.513 0.758 0.807 0.867 1
50-99 employees Cost 225 0.559 0.117 0.237 0.493 0.560 0.637 0.883
Technical 225 0.735 0.161 0.405 0.596 0.704 0.848 1
Allocative 225 0.771 0.089 0.432 0.743 0.794 0.860 1
100-249 employees Cost 212 0.531 0.098 0.252 0.488 0.559 0.619 0.922
Technical 212 0.666 0.144 0.415 0.596 0.681 0.785 1
Allocative 212 0.810 0.084 0.528 0.770 0.819 0.868 1
250—499 employees Cost 114 0.560 0.091 0.255 0.471 0.553 0.594 0.836
Technical 114 0.690 0.131 0.430 0.585 0.662 0.753 1
Allocative 114 0.816 0.083 0.587 0.750 0.808 0.861 0.990
500-999 employees Cost 77 0.486 0.096 0.325 0.482 0.558 0.624 0.835
Technical 77 0.604 0.160 0.325 0.589 0.686 0.815 1
Allocative 77 0.816 0.086 0.620 0.726 0.803 0.864 1
more than 1000 employees Cost 72 0.494 0.118 0.360 0.459 0.522 0.594 0.966
Technical 72 0.617 0.152 0.460 0.563 0.653 0.787 1
Allocative 72 0.805 0.074 0.600 0.748 0.794 0.858 0.966
total Cost 905 0.523 0.108 0.183 0.487 0.557 0.626 1
Technical 905 0.656 0.151 0.325 0.591 0.682 0.803 1
Allocative 905 0.806 0.084 0.432 0.750 0.806 0.866 1

? Averages are due to Fire and Zelenyuk (2003).

Thus, a dynamic analysis is required to assess the ability of German manufacturing firms to adopt an optimal
combination of inputs.

5. Concluding remarks

Allocative inefficiency, introduced in the seminal work by Farrell (1957), has important implications from the
perspective of the firm. On the other hand, the existing empirical evidence on the extent and determinants of allocative
efficiency within and across industries is rather limited. The major reason is that the traditional approach to assessing
allocative efficiency requires input prices. However, input prices are rarely accessible, which per se, precludes the
analysis of the allocative efficiency.

In this paper, a new method is developed which enables calculating allocative efficiency without knowing input
prices. This indicator is derived as the profit-oriented distance to the frontier in profit-technical efficiency space. Thus,
besides input and output quantities, only the profits of the firms are needed for calculating allocative efficiency. The
necessary assumptions for the proposed methodology could be regarded as restrictive, however, we believe that these
assumptions do not considerably reduce the usefulness of the new approach for empirical studies, and that this method
opens doors to many interesting applications. A simple Monte-Carlo experiment was performed to check the validity of
the new methodology. Both the new and the traditional method lead to comparable measures of efficiency for
individual firms. This is confirmed by the high-rank correlation coefficients between allocative efficiency estimates
based on both approaches for different parameter constellations. Moreover, the new approach proved to be quite robust
with respect to variance of true technical efficiency.

Finally, we applied the new approach to a sample of about 900 enterprises from the German chemical industry to
highlight the usefulness of our method for obtaining allocative efficiency measures when input prices are not available.
The conducted cost efficiency analysis would not be possible by means of the traditional approach. Empirical results
suggest a fairly low level of cost efficiency. Technical inefficiency is mainly the cause of the latter observation.
Moreover, the empirical analysis shows that smaller firms are performing better than larger ones. Furthermore, German
chemical manufacturing firms are on average allocatively inefficient, i.e., do not choose an optimal combination
of inputs. The latter finding, however, is based on mere cross-section and dynamic analysis has to be done in this
direction.
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